

Charging IC Information

April 2004

Korea PowerCell, Inc.

www.powercellkorea.com

Charge Controller IC Information

- Use the one chip solution : Charge Controller + Protection Controller
- <u>Current cut-off is a bit more accurate than Voltage cut-off</u>

Current Method

• Texas Instruments Charging IC : Model #bq24205

http://focus.ti.com/docs/prod/folders/print/bq24205.html

• Linear Technology Charging IC : Model #LTC4054L-4.2

http://www.linear.com/prod/datasheet.html?datasheet=992

Voltage Method

• On-Semiconductor Charging IC : Model #NCP1800 series

http://www.onsemi.com/site/products/summary/0,4450,NCP1800,00.html

• Seiko Instruments Charging IC : Model #S-8261 series

http://speed.sii.co.jp/pub/compo/ic/en/product1.jsp?catID=5&recordID=379

• We recommend to insure optimal performance of the Li-ion Battery

Charging Method	Constant Current / Constant Voltage (CC/CV)
Charging Voltage	4.20V Max.
Charging Current	Standard 1 CmA
Termination Current	0.1 to 0.05 CmA
Charging Time	2.5 ~3 hrs
Charging Temperature	0°C to + 45°C

* Low Voltage Battery Charge

- : When the voltage is 2.9V or less, charge using a charge current of 0.1 CmA or less. (Required in Charger)
- ** Note that there will be some degree of variation for each individual battery.
- * The discussion above assumes a single cell battery. Please contact us for your specific charging requirements.

Typical Charging Algorithm

